Plant acclimation to environmental stress: a critical appraisal

نویسنده

  • Naser A. Anjum
چکیده

Being a prime source of food, agriculture sustains almost all life-forms on the Earth. However, apart from natural calamities, a range of man-made activities are causing significant increase in environmental stresses for plant growth. Adverse conditions, in turn, restrict crop plants to reach their full genetic potential of producing high yield (Anjum et al., 2014). Also, agriculture is under pressure to accelerate crop-yield to feed rapidly increasing world-population that is projected to stabilize at around 9.2 billion toward the year 2050 (Singh, 2012). Thus, a clear understanding of the strategies for sustainably improving crop-health, development and productivity under adverse conditions is timely and imperative. With the major aim of achieving plant-environmental stress-acclimation, discussions are focused in the 17 chapters of the entitled above edited book mainly on two major tools: (a) genetically engineering stress-responsive genes, and (b) sustainable agriculture practices. Under the categorized above first tool, the strategy of employing DREB-like proteins, homeobox genes, APETALA2 gene-family, and G-proteins for overcoming environmental-stresses and increasing crop-yield under adverse conditions. Notably, exhaustive studies on the potential role of the dehydration-responsive element-binding proteins (DREB2)-like proteins and their interaction with abscisic acid particularly during seed-germination/seedling-growth, may give us an insight in plant developmental processes and stress-adaptation/tolerance-mechanisms. A gradual rise in atmospheric temperature is going to be a major challenge for crop research in near future. To this end, exhaustive molecular genetic studies were recommended for both understanding and getting more insights into thermo-sensing-mechanisms in thermal-stressed crops. Nevertheless, development of several functional tools like molecular maps, express sequence tags (ESTs), and understanding the mechanism of transgenes expression in chloroplasts particularly in important bioenergy crops can help in the minimization of the rapidly increasing marginal lands, the contributions. Transcription factors (TFs) represent master-switches controlling several target stress-responsive genes and are considered most important for regulation of gene expression. Stress-tolerance in plants can be engineered through getting insights into homeobox-TFs and APETALA2/ethylene response element-binding protein (AP2/EREBP) in abiotic/biotic stress responses and their potential use as target genes. However, a detailed functional analysis of homeobox and AP2 TFs is required to identify novel pathways and better understand underlying molecular mechanisms. Regulation of stress related pathways, including reactive oxygen species-production, stomatal regulation and processes related to plant water relations can be modulated by G-proteins and related machinery. G-proteins were suggested herein as the key proteins for overcoming environmental stresses and increasing crop yield. Elucidation of different non-genetic or epigenetic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress: antagonistic signaling for acclimation or cell death?

Severe environmental stress imposed on plant tissues induces changes in oxygen (O2) metabolism that cause oxidative stress. Oxidative stress occurs when reactive oxygen species (ROS) are not rapidly scavenged and the rate of repair of damaged cell components fails to keep pace with the rate of damage. If this situation persists, irreversible damage results in a loss of physiological competence ...

متن کامل

So what's new in the field of plant cold acclimation? Lots!

Due to its intrinsically interesting nature and importance to agriculture, considerable effort has been directed at understanding the phenomenon of “cold acclimation,” the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. By 1980, thousands of research articles had been published on the topic and significant insights had been gained, including the f...

متن کامل

Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus ...

متن کامل

ROS and redox signalling in the response of plants to abiotic stress.

The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) int...

متن کامل

Differential expression of heat shock protein genes in preconditioning for photosynthetic acclimation in water-stressed loblolly pine.

Heat shock proteins (HSPs) are induced not only under heat stress conditions but also under other environmental stresses such as water stress. In plants, HSPs families are larger than those of other eukaryotes. In order to elucidate a possible connection between HSP expression and photosynthetic acclimation or conditioning, we conducted a water stress experiment in loblolly pine (Pinus taeda L....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015